
1

J2EE Security for
Servlets, EJBs and Web

services

Pankaj Kumar
Software Architect, HP

Date: March 28, 2003

Presentation Goal

Learn about security issues of relevance to
Java programmers and things/APIs to know
while designing and implementing secure
programs using J2EETM platform.

2

Contents

• 10,000 ft. view of Security

• APIs for Java Security

• J2EE and software security

• RMI Security

• Web Application Security

• EJB Security

• Web Services Security

A Brief Self Introduction

• Author of a book titled “J2EE Security for Servlets,
EJBs and Web services” [To be published by
Prentice Hall in the second half of the year].

• Have been member of a number of J2EE JSR Expert
Groups (JAX-RPC, JSR109).

• Have been an Architect with HP Application Server
[now discontinued] development team.

• Presently, Software Architect with HP OpenView
Group.

• More than 12+ years of enterprise solution
development experience. Not a security expert.

• Personal Home Page at: http://www.pankaj-k.net

3

Section

• 10,000 ft. view of Security

• Java Security

• J2EE and software security

• RMI Security

• Web Application Security

• EJB Security

• Web Services Security

The Security Problem
• July 12, 2002. Hackers broke into USA Today’s website

and replaced legitimate news stories with phony articles,
• June 13, 2002. A Middleton, Massachusetts, woman

was charged for hacking into her former boss’s
computer system

• April 5, 2002. Computer hackers cracked into the
California state’s personnel database

• First week of September, 2001. CryptoLogic Inc., a
Canadian software company that develops online casino
games, said a hacker had cracked one of the firm’s
gaming servers.

• August 25, 2000. Shares of Emulex Corporation fell
more than sixty percent after a fake press release was
posted to Internet Wire, an online news service.

4

10,000 ft. View of Security

Security
Threats

Security Concepts/
Mechanisms

Security
Technologies

Networks,
Computers,
Applications

Security Threats

Viruses
Worms
Trojan Horses
DoS/DDos
Password cracking
Session Hijacking
Privilege Escalation
Unauthorized Access
Network snooping
Person-in-the-middle
Spoofing
Cross Site scripting
Command Injection
…

•Protocol Weaknesses
•Implementation flaws
•Insecure configuration
•Insecure design

5

Security Concepts/Mechanisms

•Identification
•Authentication
•Authorization
•Confidentiality
•Integrity

•Administration
•Auditing
•Program Robustness
•Configuration Mgmt.
•User Education

Security Technologies

•Cryptography
•Public Key Infrastructure (PKIX)
•XML Security Specifications
•Authentication Servers/SSO
•Transport Layer Security (TLS/SSL)
•Firewalls
•Anti-Virus Software
•Intrusion Detection Systems
•Vulnerability Analysis Tools
•Virtual Private Networks
•…

6

Contents

• 10,000 ft. view of Security

• Java Security

• J2EE and software security

• RMI Security

• Web Application Security

• EJB Security

• Web Services Security

Java Security
• Cryptographic APIs and Tools

– Java Cryptographic Architecture
– Java Cryptographic Extension (JCE)
– PKI Support
– keytool

• Transport Layer Security (or SSL)
– Java Secure Socket Extension (JSSE)

• Access Control
– Access Control through policies
– Java Authentication and Authorization Service

(JASS)

7

Cryptographic Services
(Not an exhaustive list)

JKS, JCEKS, PKCS12KeyStore

X509CertificateFactory

LDAP, CollectionCertStore

DiffieHellman, RSAKeyPairGenerator

DES, TripleDESKeyGenerator

DES, TripleDESCipher

SHA1withDSA, SHA1withRSASignature

HmacMD5, HmacSHA1Mac

SHA1, MD5MessageDigest

SHA1PRNGSecureRandom

Type/AlgorithmService

Cryptographic API Architecture

Java.security.MessageDigest

MessageDigest getInstance()

Java.security.MessageDigestSpi

Client

XYZSecureRandom

java.security.Security

java.security.Provider

XYZProvider

Figure 3-1: Provider Architecture Illustration with MessageDigest

spiClass, provider = Security.getImpl
 (alg, “MessageDigest”, provName);
return
 new SecureRandom(spiClass, provider);

calls

calls

pseudo code

8

Code to create MessageDigest

byte[] databytes;

//fill databytes with the
//message bytes …

MessageDigest md =
MessageDigest.getInstance(“SHA1”);

md.update(databytes);
byte[] mdbytes = md.digest();

Public Key Infrastructure

CA “X”
I am “X” because

I say so.

I am “Y” and “X” says so I trust you to be “Y”
Because “X” says so.

Subject “Y” Relying party

Y-Cert:
X signed

X-Cert:
Self signed

X-Cert

9

keystore
• A password protected file to

store
– Secret keys
– Private and Public Key pairs

with self-signed X.509
certificates or a CA signed
certificate with certificate
chain

– Trusted CA certificates or
certificate chains

• Supported formats
– JKS, JCEKS, PKCS12 (read-

only)

• Each entry identified by an
alias

secret key

private key

self-signed
X.509 certificate

private key

certificate chain

trusted certificate

keytool

• A command line tool to manage keystores
– Create a keystore with a private key and self-signed

certificate (-genkey)

– Generate a certificate signing request (-certreq)

– Import a CA signed certificate (-import)

– Export a certificate (-export)

– List entries (-list), delete entry (-delete),
change keystore password (-storepasswd), change
key entry password(-keypasswd), …

10

Limitations
• No tool support for cryptographic services
• Can’t sign certificates (using keytool or any

API)
• Passwords entry displays password on screen

(for keytool)
• Can’t export private key and certificate chain

in PKCS12 format (required for use by MS IE
or Netscape Navigator)

• Can’t use the certificate store of Windows
• Cipher Service not for asymmetric

cryptography
• …

Java Secure Socket Extension

• Supports development of TLSv1/SSLv3 client
and server programs

• SSL is a secure online communication
protocol with following properties
– Message Integrity

– Message Confidentiality

– Server Authentication (through X.509 certificate)

– Optional Client Authentication

• Programming API is similar to that of Socket
APIs

11

JSSE (Contd.)
• A client program can access HTTP over SSL

simply by changing http://… to https://…
using java.net.URL class.

• RMI communication can be setup to use SSL.
• Most of the configuration is through system

properties
– javax.net.ssl.keyStore

– javax.net.ssl.keyStoreType

– javax.net.ssl.keyStorePassword

– javax.net.ssl.trustStore

– javax.net.ssl.trustStoreType

– javax.net.ssl.trustStorePassword

Limitations

• Limited number of cipher suits are
supported

• Doesn’t work with NIO channels

12

Access Control
• Granular access control of specific operations

on specific entities by granting permission
through policy files
– Permissions defined for SDK classes with names

and action strings.
– User programs can create their own Permissions.

• Example:
grant {

permission java.io.Permission
“${user.dir}${/}*”, “read,write”;

permission java.net.SocketPermission
“www.hp.com:1024-”, “connect, resolve”

};

Access Control (Contd.)
• Access Control Criteria

– Access to code loaded from a specific location
(URL)

– Access to code signed with the private key
corresponding to a X.509 certificate

– Access to code running on behalf of a user with
specific identity (user id. Or role) [added by JAAS]

– None or more of the above

• Example:
keystore “file:${user.dir}${/}test.ks”
grant codeBase “http://www.hp.com/-”

signedBy “pankaj”
Principal javax.security.auth.x500.X500Principal

“CN=Pankaj Kumar, …” {
};

13

Access Control (Contd.)

• Policy based checks are performed only
when a Security Manager is installed
– By default, applets run with Security Manager

enabled

– By default, standalone JVM runs without
Security Manager

Section

• 10,000 ft. view of Security

• Java Security

• J2EE and software security

• RMI Security

• Web Application Security

• EJB Security

• Web Services Security

14

J2EE & Security

• J2EE is a platform for building distributed,
Enterprise Solutions

• Focus is on supporting design, development
and deployment of secure solutions

• Can’t solve all security problems
• Contains relevant APIs for Programmers
• Contains SPIs for Security Product Vendors
• Deployment time security configuration for

administrators

How does J2EE Secure
Applications?

• Protects applications and users from
interacting with unknown entities by
supporting authentication mechanisms.

• Protects resources (URLs, EJBs, Files, …)
from unsanctioned use by supporting
authorization.

• Protects communication between two entities
through SSL
– Confidentiality
– Tamper detection
– Appropriation

15

RMI Server

Java Based Distributed Architectures

Servlet

Applet

J2SE Client

RMI
Applet

Web Browser

J2SE Client

Any Program

Web Applications

EJB

J2SE Client

Servlet

EJB
MDB

EJBs

Message

Web ServiceAny Program

Web Services

J2EE Container
J2EE Container

J2EE Container

Contents

• 10,000 ft. view of Security

• Java Security

• J2EE and software security

• RMI Security

• Web Application Security

• EJB Security

• Web Services Security

16

RMI Security

• By default, RMI has limited security
– Downloading of stub code from a URL

requires security manager.

– No transport level security for RMI
messages but SSL can be used.

– JAAS can be used to authenticate the client
but requires significant attention to
application design.

Contents

• 10,000 ft. view of Security

• J2EE and software security

• APIs for Java Security

• RMI Security

• Web Application Security

• EJB Security

• Web Services Security

17

Web Application Security
Top ten Web application flaws published by

OWASP (http://www.owasp.org)
1. Un-validated parameters
2. Broken Access Control

�

3. Broken Account and Session Management
�

4. Cross Site Scripting
5. Buffer Overflows

�

6. Command-line injection flaws
7. Error handling problems
8. Insecure use of cryptography

�

9. Remote Administrations Flaws
10. Web Application and Server Mis-configuration

J2EE Security for Web. Apps.

• Declarative
– Declarative statements in deployment descriptor

file web.xml

– Adequate for most purposes

• Programmatic
– Information about the user made available to the

program through APIs

– Program makes access control decisions

• It is common to combine these.

18

Access Control through
Deployment Descriptor

<security-constraint>
(<display-name> descriptive name</display-name>)?
(<web-resource-collection>

<web-resource-name> desc-name</web-resource-name>
(<description> descriptive text</description>)?
(<url-pattern> url pattern</uri-pattern>)*
(<http-method> http method</http-method>)*

</web-resource-collection>)+

Which URLs to protect?

Which HTTP Methods?
GET, POST,

PUT, DELETE,
HEAD

Access Control through
Deployment Descriptor (Contd.)

(<auth-constraint>

(<description> descriptive text</description>)?

(<role-name> user role</user-role>)*

</auth-constraint>)?

(<user-data-constraint>

(<description> descriptive text</description>)?

(<transport-guarantee> tg</transport-guarantee>)

</user-data-constraint>)?

</security-constraint>

Which users?

What transport?
NONE ==> plain HTTP

INTEGRAL, CONFIDENTIAL
==> HTTP over SSL

19

User Login
<login-config>

(<auth-method> auth. mechanism</auth-method>)?

(<realm-name> realm id. String</realm-name>)?

(<form-login-config>

<form-login-page> login-url</form-login-page>

<form-error-page> error-url</form-error-page>

</form-login-config>)?

</login-config>

BASIC ==> HTTP BASIC
DIGEST ==>HTTP DIGEST
FORM ==>Program Specific
CLIENT-CERT ==> SSL

For FORM Auth. only.
URLs to show for
login prompt and
error message

Programmatic Security

• Methods in HttpServletRequest class
– String getRemoteUser()

– boolean isUserInRole(String role)

– Java.security.Principal getUserPrincipal()

• Example:
...

if (!req.isUserInRole(“payinguser”)){

return;

}

...

20

Contents

• 10,000 ft. view of Security

• J2EE and software security

• APIs for Java Security

• RMI Security

• Web Application Security

• EJB Security

• Web Services Security

EJB Security

• Separation of security responsibilities – Bean
Provider, Application assembler, Deployer
and System Administrator

• Authenticate the Caller
• Access Control per EJB, per operation
• Allow Caller Identity Propagation
• Allow Caller Identity Delegation
• Protect Message on the Wire
• Interoperate with CORBA !!

21

Separation of Security
Responsibilities

• Programmatic Security (Bean Provider)
– java.security.Principal getCallerId();
– isCallerInRole(String roleName)

• Declarative Security in ejb-jar.xml file (Application
Assembler)
– <security-role-ref>
– <security-role>
– <method-permission>

• Mapping to Container Specific mechanisms
(Deployer)

• User Creation/Modification/Removal (Administrator)

Caller Authentication
• JNDI based authentication

– Caller specifies user credentials as
properties to JNDI context

• Username and password

• X.509 certificate

• JAAS Authentication
– Using LoginModules

• Authentication by Web Application

22

A Secured EJB

Client
Identity=”akriti”

password=”******”

...
<security-role-ref>
 <role-name>echomanager</role-name>
 <role-link>echouser</role-link>
</security-role-ref>
...
<assembly-descriptor>
 <security-role>
 <role-name>echouser</role-name>
 </security-role>
 <method-permission>
 <role-name>echouser</role-name>
 <method>
 <ejb-name>Echo</ejb-name>
 <method-name>echo2</method-name>
 </method>
 ...
 </method-permission>
</assembly-descriptor>

…
<security-role-assignment>
 <role-name>echouser</role-name>
 <principal-name>
 EchoApp
 </principal-name>
</security-role-assignment>
…

weblogic-ejb-jar.xml

ejb-jar.xml

Echo

EchoApp:
akriti
...

echo
echo2
echo3
echo4

User Account System
Database

Identity Propagation

Client EchoGW Echo

identity=”akriti”
password=”******” identity=”akriti”

…
<security-identity>
 <use-caller-identity/>
</security-identity>
…

ejb-jar.xml

23

Identity Delegation

Client EchoGW Echo
Identity=”akriti”

password=”******” Identity=”unnati”

…
<security-identity>
 <run-as>
 <role-name>
 specialuser
 </role-name>
 </run-as>
</security-identity>
…
<assembly-descriptor>
 <security-role>
 <role-name>
 specialuser
 </role-name>
 </security-role>
</assembly-descriptor>

…
<security-role-assignment>
 <role-name>
 specialuser
 </role-name>
 <principal-name>
 unnati
 </principal-name>
</security-role-assignment>
…

weblogic-ejb-jar.xml

ejb-jar.xml

Other aspects of EJB Security

• Uses SSL for network security

• Uses CSIv2 for identity assertion across
EJB containers and to interoperate with
CORBA

• Need not use JAAS for Access Control !

24

Contents

• 10,000 ft. view of Security

• J2EE and software security

• APIs for Java Security

• RMI Security

• Web Application Security

• EJB Security

• Web Services Security

Web Services Security

• Transport level security same as Web
Applications (not EJBs !)
– Amounts to using HTTP over SSL

– No message level protection

• Not Adequate for end-to-end security

25

Web Services Security

• A number of XML based security standards
are now available
– XML Signature – Message Level Authentication

and tamper-evident. (W3C)
– XML Encryption – Message Level Privacy

(W3C)
– XML Trust Services – Key Management (W3C)
– SAML – Security Assertion Markup language

(OASIS)
– XACML – Extensible Access Control Markup

Language (OASIS)

Web Services Security

• Java APIs are getting defined
– JSR 104: XML Trust Service API

– JSR 105: XML Digital Signature APIs

– JSR 106: XML Digital Encryption APIs

– JSR 155: Web Services Security
Assertions

– JSR 183: Web Services Message Security
APIs.

26

Q&A

